Search results for "Dimension function"
showing 10 items of 13 documents
Separation properties of (n, m)-IFS attractors
2017
Abstract The separation properties of self similar sets are discussed in this article. An open set condition for the (n, m)- iterated function system is introduced and the concepts of self similarity, similarity dimension and Hausdorff dimension of the attractor generated by an (n, m) - iterated function system are studied. It is proved that the similarity dimension and the Hausdorff dimension of the attractor of an (n, m) - iterated function system are equal under this open set condition. Further a necessary and sufficient condition for a set to satisfy the open set condition is established.
Hausdorff measures and dimension
1995
Visible parts and dimensions
2003
We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…
One-dimensional families of projections
2008
Let m and n be integers with 0 < m < n. We consider the question of how much the Hausdorff dimension of a measure may decrease under typical orthogonal projections from onto m-planes provided that the dimension of the parameter space is one. We verify the best possible lower bound for the dimension drop and illustrate the sharpness of our results by examples. The question stems naturally from the study of measures which are invariant under the geodesic flow.
Local dimensions of measures on infinitely generated self-affine sets
2014
We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space. We also give an estimate, that holds for all translation vectors, with only assuming the affine maps to be contractive.
On the conical density properties of measures on $\mathbb{R}^n$
2005
We compare conical density properties and spherical density properties for general Borel measures on $\mathbb{R}^n$ . As a consequence, we obtain results for packing and Hausdorff measures $\mathcal{P}_h$ and $\mathcal{H}_h$ provided that the gauge function $h$ satisfies certain conditions. One consequence of our general results is the following: let $m, n\,{\in}\,\mathbb{N}, 0\,{\lt}\,s\,{\lt}\,m\,{\leq}\,n$ , $0\,{\lt}\,\eta\,{\lt}\,1$ , and suppose that $V$ is an $m$ -dimensional linear subspace of $\mathbb{R}^n$ . Let $\mu$ be either the $s$ -dimensional Hausdorff measure or the $s$ -dimensional packing measure restricted to a set $A$ with $\mu(A)\,{\lt}\,\infty$ . Then for $\mu$ -almos…
Hausdorff dimension from the minimal spanning tree
1993
A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.
On Upper Conical Density Results
2010
We report a recent development on the theory of upper conical densities. More precisely, we look at what can be said in this respect for other measures than just the Hausdorff measure. We illustrate the methods involved by proving a result for the packing measure and for a purely unrectifiable doubling measure.
Dimension gap under conformal mappings
2012
Abstract We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p -integrability of the hyperbolic metric, p > 1 . This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.